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ABSTRACT 

A NOVEL PROCESS FOR CONTINUOUS THERMAL EMBOSSING OF LARGE-

AREA NANOPATTERNS ONTO POLYMER FILMS 

SEPTEMBER 2008 

MATTHEW D. FAGAN, B.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by:  Professor Byung H. Kim 

 

As imprint lithography becomes commonplace in industrial manufacturing, the need 

for fast, reliable modifications to the process are of great importance.  In particular, the 

Roll-to-Roll Nanoimprint Lithography (R2RNIL) method has been proven to yield large 

areas of continuous, robust patterns in the micro- and nanometer range.  A thermal 

embossing R2RNIL system has been developed that is capable of providing a mold 

heating rate of 100ºC/s with sufficient temperature control to produce large-area patterns 

continuously at a rate in excess of four feet per minute.  This process uses a novel looped-

conveyor mold, allowing longer continuous patterns to be produced with superior 

temperature control than other methods of R2RNIL.  Various patterns in the micro- and 

nanometer domains were replicated using this process.   
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CHAPTER 1 

PROJECT DESCRIPTION 

 

1.1 Introduction 

In recent years, the demand for micrometer and nanometer sized patterns on 

macroscopic sized areas on polymer surfaces have increased dramatically.  This has been 

especially true in the electronics and coatings industries whose applications include 

reflective polarizers, anti-reflective surfaces, drag-reducing surfaces, biologically active 

surfaces, and many others. In many of these applications it is required of the patterned 

surface to not only be free of defects on the order of the micropatterns, but also on the 

order of the macro scale area.  A reliable, fast, and low-cost process which has the 

potential to produce robust, homogeneous patterns on areas 0.1m
2
 and larger is critical to 

success in these industries.  [1-12] 

Many existing methods currently employed in the production of micropatterns are 

unsuitable for incorporation into a large area process.  Research in areas such as thermal 

and UV light curing imprint lithography have yielded robust, defect free structures with a 

resolution as low as 10nm; however, these methods are limited to areas of tens of cm
2
 or 

less. This limitation on area is largely due to the high pressures needed for these 

processes, often in excess of 1MPa; and, more importantly, the size and cost of the molds 

used to replicate the structures.  [3, 7, 9, 13-20] 

Roll-to-roll nanoimprint lithography (R2RNIL) has become a promising method in 

the production of large-area micro-/nanopatterns. [9, 18, 21-26]  This process runs a 

polymer film through a set of rollers, usually one patterned roll and one or more pressure 
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rolls.  Three distinct advantages in using this process are the following:  contact between 

rollers effectively concentrates the applied force onto a one dimensional line, creating 

very high pressures with a low applied force; allowing the use of a small mold to create a 

significantly larger patterned area; and transitioning from a discontinuous to a continuous 

process.   

Two common methods for creating patterns using R2RNIL include thermal 

embossing and UV curing.  The thermal R2R embossing technique uses a heat source to 

raise the temperature of the mold above the glass transition temperature of the substrate 

to be patterned and forces the polymer to flow into the mold features.  The mold is then 

cooled and the patterned substrate lifted off the roll. Tan et al has demonstrated a similar 

method to demonstrate non-continuous patterns with sub-100nm resolution. [26] UV 

R2RNIL uses chemical resin consisting of monomer, a crosslinking agent, and a UV 

sensitive initiator which when exposed to a light source of 400nm wavelength or below 

initiates a free radical polymerization with the monomer and crosslinker creating a solid 

polymer network.  The UV resin is spread over the surface of a flexible polymer 

substrate, pressed onto the mold roller, and exposed to high intensity UV light.  This 

method has been demonstrated to produce continuous sub-100nm features.  Guo et al has 

demonstrated UV R2RNIL to be successful in the replication of features down to 100nm. 

[27] The Anvik Corporation has been developing and producing UV R2RNIL systems for 

a number of years now and has successfully produced patterns down to one micron. [28-

30] Anvik has also preformed research into the large-scale production of microelectronics 

using R2RNIL.  [7, 9, 18, 21-30]  

nblackburn
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Of the continuous types of micropatterning processes, UV R2RNIL and thermal R2R 

embossing appear to yield the most promising results, and both of these processes have 

their own distinct advantages.  In UV R2RNIL, a polymer film is coated with a 

photosensitive resist and placed in contact with a mold roll while simultaneously 

exposing the contact region to high intensity ultraviolet light, initiating a fast 

polymerization reaction.  The film is then released from the roll with the polymer resin 

cured with the negative of the mold roll pattern.  A number of parameters determine the 

quality of the pattern replication, and two important parameters to consider include the 

viscosity of the polymer resin and the surface energy of the mold.  Resin viscosity 

determines the rate at which the polymer resin flows into the mold patterns.  Since the 

resin is not pressurized or forced to flow into the mold patterns, capillary action 

dominates this process, and thus is greatly dependant on the viscosity of the resin.  

Photosensitive resins generally have a very high viscosity due to the high viscosity of the 

photoinitiator and monomer components of the resin.  The viscosity can often be lowered 

by adding a solvent such as propylene glycol methyl ether acetate (PGMEA), however, as 

solvent concentration increases, flash evaporation occurs in the resin upon exposure to 

UV light, creating pattern defects.  [16, 18, 25] 

Mold surface energy also plays an important role in pattern replication in UV 

R2RNIL.  Surface energy of the mold determines the adhesive force between the film-

mold interface once resin curing has occurred.  If the mold surface energy is too high, the 

cured resin will stick rather than release from the mold during the lift-off process.  This 

often results in permanent damage to the mold since the cured resin is crosslinked and 

difficult to remove.  Mold surface energy can be lowered by the application of a coating, 
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often a fluorosilane based coating, such as heptadecafluoro-1,1,2,2-tetrahydrodecyl 

trimethoxysilane, which bonds to the surface of the mold and prevents interfacial 

adhesion between the cured resin and mold.  Since thermal R2R embossing does not 

require the use of such surface coatings or resists, patterns can be produced easier and at 

a lower cost.  [13, 25] 

By exploiting the difference in the CTE of the metal molds used in this project and 

that of the thermoplastic films used as substrates, the adhesive forces between mold and 

substrate can be greatly reduced at the interface due to relative shrinkage of one material 

at the interface.  As the film and mold begin to reach the end of the holding stage, the 

film and mold are quickly cooled by the external convection directed by the high pressure 

cooling air.  As they cool together, the magnitude of the film shrinkage will be greater 

than that of the mold shrinkage, due to the difference in CTE between the two materials, 

thereby forcing an interfacial release.  This release mechanism allows for minimal pattern 

damage in both the mold and the patterned film, and does not require the use of surface 

energy altering mold coatings that can be both expensive and difficult to properly apply.  

Low thermal conductivity of the film material is also desirable.  During mold-film 

contact, it would be ideal for the mold to transfer heat to only the surface of the film, 

rather than conduct heat to the bulk of the film.  Since the film is under tension during 

patterning, heating the entire film higher than its glass transition may lead to excess film 

stretching or tearing during operation.  
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1.2 Background 

The objective of this project is to develop a novel method for the fabrication of large-

area sub-micron patterns onto a polymer substrate in a continuous thermal embossing 

process.  A continuous embossing process will incorporate the ability to pattern features 

with no limit to the length dimension of a patterned area (infinite film length).  The 

specific process involves passing a polymer film in contact with a heated mold through a 

pair of pressure rollers, which force the material at the surface of the polymer film to 

flow into the mold features.  The thermal R2R embossing process is similar to that of 

typical thermal embossing; however, the R2R variation produces large areas of patterns 

in a continuous process, rather than the small areas and discontinuous patterns typical of 

traditional thermal embossing.   

An oversimplified description of the transition between the two said embossing types 

would be the wrapping of the flat mold used in traditional thermal embossing around a 

cylinder, or roll, and using this as the new mold.  A cartoon of the overall thermal R2R 

process is shown in Figure 1-1.  In this figure, a polymer film (green) is pre-treated then 

fed between a pressure 

roll (bottom roll, blue) 

and a heated embossing 

roll (top roller, blue).  

The surface of the 

embossing roll is 

patterned with the desired 

microfeatures to be 
Figure 1-1:  Cartoon schematic of basic R2R process. 

nblackburn
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replicated onto the polymer film.  Pre-treatment of the film may involve cleaning, corona 

treatment, pre-heating, or nothing at all.  Once in contact with the heated embossing roll, 

the film is heated and pressed into the features on the surface on the roll.  The film is then 

quickly cooled and held in the features on the embossing roll, before being lifted off.   

Polymers are interesting materials unlike metals and ceramics in that they are 

composed of long chains of molecules grouped together.  Two classes of polymer solids 

exist, that of thermosets and thermoplastics.  Thermoplastic polymers are those that are 

composed of tangled macro-molecular chains.  In solid form, the relatively weak Van der 

Waals force and the „tangling‟ of a network of such large molecules hold thermoplastics 

together.  The molecular chains may either be disordered (amorphous) or ordered 

(crystalline), but generally macro-molecules in thermoplastic materials are not connected 

to each other through covalent bonds.  As such, the material exhibits viscoelastic 

properties, having the properties of both a liquid (viscous) and a solid (elastic).  Since no 

covalent bonds exist between molecules in thermoplastics, they do experience a softening 

temperature at which they will begin to flow.  [31-33] 

Thermoset polymers are somewhat similar to thermoplastics except that some 

molecules are connected to other molecules in the network with a covalent bond.  This 

covalent bond is referred to as a „crosslink.‟  With extensive crosslinking, thermosets do 

not have melting points but instead will decompose if exposed to excessive heat.  The 

two types of nanoimprint lithography cover the use of these two different sets of 

polymers as substrates.  Embossing uses thermoplastic materials as substrates, merely 

pressing features into the surface of a plastic and physically forcing the material to form 

shape of the mold.  UV curing lithography uses a thermoset-like material as a substrate, 
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allowing a liquid to flow into the features of a mold and subsequently crosslinking the 

liquid into a solid polymer network via a photo-polymerization reaction.  [32] 

Figure 1-2 shows the modulus-temperature relation for polystyrene, a thermoplastic.  

At low temperatures, the material is in the „glassy‟ regime and is strong, elastic, and 

brittle.  The modulus remains relatively unchanged until a material property known as the 

glass transition temperature is reached.   

The glass transition temperature is a 

material dependant property and is the 

temperature at which the motion of 

molecules due to heat energy in the 

material is enough to disrupt the Van 

der Waals attraction between polymer 

molecules.  At the glass transition 

temperature the modulus sharply drops 

several orders of magnitude, as shown 

in Figure 1-2 for polystyrene with a 

glass transition temperature of 100ºC.  By heating the polymer higher than that of the 

glass transition temperature, it should become much more like a viscous liquid. 

Simulations preformed by Young have shown that for temperatures much higher than the 

glass transition temperature of the material no elastic effects (relaxation) are observed. 

[31-34] 

Figure 1-2: Temperature-modulus 

relationship for Polystyrene (Tg = 

100ºC). 
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Target temperatures achieved at 

specific locations during the embossing 

process are shown in Figure 1-3.  This 

cartoon shows the film (green line) 

entering the embossing region, where the 

surface of the embossing roll (top roll) has 

been heated to 40ºC above its glass 

transition temperature (red, top roll).  

Increasing the film temperature beyond the 

glass transition temperature is critical, as 

the elastic modulus of the substrate quickly drops once this temperature is exceeded.  A 

semi-log plot of the elastic modulus (tensile modulus) versus temperature for PET is 

shown in Figure 1-4. [35] At the 

glass transition temperature of 

PET (~80ºC) the elastic modulus 

begins to drop off more steeply 

with temperature until hitting its 

melting point where it looses 

much of its elastic properties.    

[34, 35] 

Temperatures in the holding 

regime of the embossing step 

will typically be just around the 

Figure 1-3:  Embossing stage of 

R2R showing temperatures in their 

respective areas. 

Figure 1-4:  Tensile properties of a similar PET 

material used in this project.   
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glass temperature of the material (orange, top roll).  This holding stage is an important 

part of the embossing process, especially when using thermoplastic materials, as 

relaxation effects can become a problem.  Relaxation is a viscoelastic effect wherein a 

plastically deformed polymer will creep, or relax, to its undeformed shape after the load 

has been removed.  This often occurs on the timescale of hours to days after unloading.  

The mechanism for this effect is the partial mobility of polymer chains within a network.  

Rather than move from one location to another in a polymer network when stressed, a 

polymer chain may only stretch elastically and form new entanglements in this stretched 

position.  Immediately after the load is removed, the polymer chain will not immediately 

recover its elastic strain because of the entanglements, and net plastic strain in the bulk 

material will be observed.  Since elastic strains will still exist within the polymer chain 

(assuming the chains have not been broken), the chain will attempt to recover this strain, 

however slowly, since entanglements with other chains will hinder this recovery.  This 

has been directly observed in embossed features.  Relaxation can be reduced by 

allocating sufficient holding time, allowing for freezing of the polymer in its deformed 

state; and also by embossing at a sufficiently high temperature, inciting maximum 

mobility of the polymer chains when loaded.  Once the temperature in the film has been 

lowered to well below its glass transition temperature (40ºC or more below) it is lifted off 

the embossing roll. [18, 33, 36, 37]  

This project has been split into three phases:  Machine Design, Mold Design, and 

Experimentation.  The Machine Design phase encapsulates the design, assembly, and 

testing of a stand-alone machine which will be capable of producing the desired product.   

Proper control of film speed, embossing pressure, embossing temperature, along with 
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optimized machine geometry, and heating and cooling systems will be the foundations to 

success in this project.   

Once a proper machine has been constructed, a mold design must be incorporated into 

the system for the transfer of the desired features.  The objective of this phase is to create 

a mold capable of producing features continuously, not necessarily to produce continuous 

features, although this would be ideal.  The logistics of creating a circular mold with 

nano- or even microscale features that matched seamlessly is not the focus of this project.  

The mold design to be developed in this project is that of a belt type mold resembling a 

conveyor belt. 

The experimentation phase encompasses the both the experimental and simulation 

aspects of this project.  Work done during this phase will include material selection, 

machine tuning, physical experimentation, and the characterization of the patterns 

produced.  Certain material properties of the films used for substrates are of great 

importance during the embossing process, these properties include the following:  

coefficient of thermal expansion (CTE), glass transition temperature (Tg), and thermal 

conductivity.  An optimization of the process parameters will be necessary to not only 

provide good output efficiency but is also required to achieve any success at all.  A good 

example would be choosing a proper film speed, as this will greatly affect the heating and 

cooling requirements of the mold and film.   

Since this is to be a continuous process, it is clear that the net heat transfer into the 

embossing roll per cycle must be identically zero to avoid overheating of the mold.  

While it may be an easy task to quickly dump heat into the embossing roll to achieve 

necessary embossing temperatures, it is not so easy a task to remove such large amounts 
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of heat within one cycle.  In this project, the heat generation in the mold will be 

accomplished using the Rapid Thermal Response (RTR) method, pioneered by Kim and 

Yao at the University of Massachusetts Amherst. [38, 39] The RTR method uses 

induction heating as the heat source, and thin sections of a mold are heated, often with 

undercuts for the reduction of the thermal inertia of the surface to be heated.  RTR has 

been proven to raise the temperature of a mold to 250ºC in 2 seconds.  Cooling methods 

considered in this project focus on external convection as the primary source of heat 

removal; however, a design for an internally cooled roller is also discussed.  [38, 39] 

A partner in this project, Professor Donggang Yao of the School of Polymer, Textile 

& Fiber Engineering at Georgia Institute of Technology, will perform the simulations of 

polymer flow into the mold during embossing.  The process performed in this experiment 

can be modeled in a way similar to that of an injection molding process, with viscous 

polymer forced to flow into the vacancies in a mold.  Obtaining measurements needed for 

proper simulation will also be part of this phase of this project.  Characterization of 

replicated features will be accomplished by scanning electron microscopy, optical 

microscopy, profilometry, and atomic force microscopy, where applicable.   
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CHAPTER 2 

MACHINE DESIGN 

 

2.1 Base Machine 

The foundation of this project is the design of the machine used in the embossing of 

the microfeatures.  A poorly designed embossing machine will result in poor replication 

quality, wasted time, and an overall sense that R2R embossing cannot be accomplished in 

this manner; therefore the success of this project largely depends on the quality of the 

machine design.  The first step in considering a proper machine design will be a clear 

understanding of the R2R process.   

A Stanat roll press was obtained and used as the core of the embossing stage:  the 

embossing roll and pressure roll.  A picture of the working section of this machine is 

shown in Figure 2-1; the embossing roll 

(top) and pressure roll (bottom) are 

driven by a 3hp motor.  A screw-type 

bearing mount sets the displacement of 

the top roller relative to the bottom 

roller; rotating the wheel on top of the 

machine changes this value.  The rollers 

are 76mm in diameter.  There is no 

system of measuring applied force with 

the base machine, but it is assumed the 

maximum force that can be applied is 

Pressure 

Rollers 

Roller 

Spacing 

Wheel 
Drive 

Gear 

Figure 2-1: Working section of 

unmodified Stanat roller press used as 

base machine for embossing. 
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quite large.  This is based on the hefty brass mounts, through-hardened steel rollers, 

13mm diameter steel displacement screws, and the fact that this machine is typically used 

to cold roll steel bar stock.  A method for measuring applied force during 

experimentation is discussed later.  This roll press will also serve as the primary driving 

motor for the roll-to-roll system. The base Stanat roll press is equipped with a 4-speed 

transmission, and even running in the lowest gear the roller speed was much faster than 

desired.  To remedy this problem, a GE Fuji AF-300 Mini electric frequency drive was 

added in-line to the power supply of the Stanat machine, which created the ability to 

select the desired speed (between 0 and maximum speed).   

 

2.2 Induction Heating  

The process of induction heating uses a high frequency current running through a 

copper coil to primarily induce eddy currents in the surface of the heated part.  The 

electrical resistance of the material to the eddy currents then heats up these areas, and this 

is referred to as Joule heating.  Induction heating obeys Maxwell‟s four laws of 

electromagnetism: 
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2

2

1
JQ  (1.5) 

Where D is the electric flux density, H is the magnetic field intensity, E is the electric 

field intensity, J is the current density, and B is the magnetic flux density.  The Joule heat 

(Q) induced in a region of a part can be calculated using the material‟s electrical 

resistivity (ρ) and the current density J: 

 

 

During induction heating, the current density J varies exponentially with the depth into 

the part,  

 

 

Where JS is the current density at the surface of the part, d is the depth below the heated 

surface, and δ is the characteristic length, also known as the skin depth.  Induction 

heating is most well known for this tendency to heat the surface of a part; this is known 

as the skin effect.  The skin depth is the depth in which 63% (1-e
-1

) of the heating occurs, 

and is calculated through the following formula: 

 

 

 

Where ρ is the electrical resistivity of the heated material, f is the AC current frequency, 

μr is the relative magnetic permeability of the heated material, and μ0 is the magnetic 

constant.  In addition to Joule heating, magnetic materials are also affected directly by the 

magnetic fields created by the changing electric current.  In hysteresis heating, the 

dipoles within the material are jostled by the applied magnetic field, which heats the 

d

SeJJ  (1.6) 

(1.7) 
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
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material through internal friction from this motion.  In this project, it is only desirable to 

heat the surface of the mold, the protruding features, in order to allow the polymer 

substrate to flow and emboss properly.  Excess bulk heating of the mold will only 

complicate the cooling process after embossing is complete, therefore the skin depth 

should be minimized.  [40, 41] 

The skin depth is inversely proportional to the square root of current frequency and 

magnetic permeability of the material; and is directly proportional to the square root of 

the electrical conductivity of the material.  Generally, when heating parts using induction 

heating, there exist few frequencies that will allow for proper current flow within the part.  

These „resonant‟ frequencies depend heavily on the geometry of the part (mold) and the 

coil, but also on the material and the mass of the part.  Therefore it will be advantageous 

to use the highest resonant frequency available for experimentation.  The skin depth is 

also inversely proportional to the magnetic permeability of the material.  A non-magnetic 

material has a magnetic permeability of 1 [Henry/m], and most magnetic materials such 

as the magnetic steel and nickel alloys have a magnetic permeability in the range of 500 – 

1300 [H/m]; therefore a mold composed of such a material will have a much more 

shallow skin depth when compared with its non-magnetic counterparts.  Additionally, the 

use of a magnetic mold material will allow for hysteresis heating.  Although it may be 

tempting to lower electrical resistivity in order to further reduce the skin depth, the joule 

heating created by the eddy currents in the surface of the part is proportional to the 

resistivity from equation (1.5), therefore the resistivity is not used as a design variable in 

the optimization of the skin depth.  [42, 43]   
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The induction heating unit used in this project is an Ameritherm Novastar 20kW unit 

with a maximum AC current frequency of 485 kHz.  An oval shaped three-turn closed-

loop induction heating coil with a major axis diameter of 89mm and a minor axis 

diameter of 28mm was used for its convenience and ideal shape for heating molds 

moving through the coil.  The surface of the coil was coated in an electrically insulating 

paint that prevented arcing between turns of the coil, and between the coil and workpiece. 

 

2.3 Pre-Heating 

It is not expected that the brief contact between the hot mold and cold film substrate 

will be enough to transfer the heat required to raise the surface of the film above its glass 

transition temperature; therefore it should be necessary to pre-heat the film before the 

embossing stage.  The method 

for pre-heating in this project 

takes advantage of the ultraviolet 

absorption of many polymer 

films, which is usually an 

undesired effect in 

photolithographic processes since 

this leads to excess heating and 

warping in the film.  The absorption spectrograph (wavelength vs. absorption %) of the 

polyethylene terephthalate (PET) film (0.2mm thickness) used in experimentation is 

shown in Figure 2-2.  The spectrograph shows full absorption of light under ~300nm and 

nearly full transmittance of light above ~330nm.  PET is well suited as a substrate for the 

Figure 2-2: Absorption spectrum of PET film 

used for embossing experiments 
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Figure 2-3: Emission spectrum of UV light used as pre-

heating source. 

embossing due to its ideal mechanical and thermal properties.  This spectrograph shows 

the complete absorption of electromagnetic radiation with a wavelength under about 

300nm.  UV light was chosen as the pre-heating method in this project since a UV light 

source has already been aquired as part of a prior project.     

In order to properly control this heating process, a brief experiment was performed to 

determine the generated heat.  The UV emitter used was a Fusion UV Systems F300S 

system, with an output spectrum as shown in Figure 2-3; the ordinate plots the radiated 

power [0-80 W-(10nm)
-1

] against the wavelength (200-600nm).   Three exposure trials 

were made, as shown 

in Figure 2-4, and are 

the following: one 

exposure with a bare 

thermocouple (blue 

curve), one exposure 

with a thermocouple 

covered by a PET 

film but not in contact with the film (green curve), and one exposure with the 

thermocouple fixed to the underside of the PET film (red curve).  Upon comparison of 

the blue and green curves, where the blue curve represents the heating response of the 

isolated thermocouple and the green curve represents the heating response of the PET 

covered thermocouple, it is obvious that much of the emitted UV radiation is absorbed by 

the PET film.  Some excess radiation, whether UV or that of higher wavelength, does 

penetrate the PET film and heats the thermocouple.  The temperature response of the PET 
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covered thermocouple (green curve) reveals that this excess radiation heats the 

thermocouple to a temperature of 232°C.  [16] 

When the PET film covering is brought into contact with the thermocouple during a 

UV exposure test (red curve), the temperature reaches a maximum of 415°C.  Since the 

maximum temperature the thermocouple can reach by excess radiation alone when 

covered with a PET film is 232°C, the measured film temperature can be taken as an 

accurate representation of the actual film temperature.  The melting temperature of PET 

is only 265ºC, and indeed, severe warping and holes were observed during the heating of 

the film.  From the slope of the red curve in Figure 2-4, we can obtain a temperature rise 

per time of the PET film when exposed to this particular UV source, which is graphically 

calculated to be 62 [ºC/s].  This is a sufficiently fast heating rate and in fact an adjustable, 
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Figure 2-4: Temperature response of PET film and thermocouple 

under UV light. 
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UV-absorbing pyrex plate has been incorporated over the UV system to absorb some of 

the emitted radiation. [32] 

 

2.4 Cooling 

In order to prevent overheating during continuous operation, the net heat added per 

cycle must be equal to zero; therefore a proper cooling system is of high importance.  The 

majority of the cooling in this project will be accomplished using external convection in 

the form of both high-pressure compressed air and 

ambient air.  Compressed air at 80psi is blown over the 

PET film and mold during the holding stage of 

embossing.  Once lift off has occurred, a cooling fan 

channels ambient air over the top of the embossing roll, 

cooling the mold.  The blue arrows shown previously in 

Figure 1-1 illustrate both modes of cooling.  Figure 2-5 

shows a picture of the backside of the R2R embossing 

machine, showing the cooling fan.   

Additionally, a design for an internally cooled 

embossing roll has been developed.  It is expected that a 

large amount of heat will be transferred to the embossing roll from the mold; therefore an 

internally cooled embossing roll will provide the necessary heat removal to keep the 

embossing roll at a steady temperature.  This design, a CAD model of which is shown in 

Figure 2-6, incorporates a mold sleeve that slides over the modified embossing roller and 

is locked into place by a key.  Figure 2-6(c) shows the flow of cooling air through the 

Figure 2-5: Backside of 

the embossing machine.  
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central supply hole to the 15 cooling slots distributed equally about the circumference of 

the embossing roll under the sleeve.  The supply hole is threaded to an air chuck that can 

be connected to compressed air.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-6: Embossing roll assembly; exploded view (a), transverse center x-

section (b), and parallel x-section showing flow of cooling air (c). 
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CHAPTER 3 

R2R MOLD DESIGN 

 

3.1 Mold Geometry 

As previously mentioned, the mold design that will be developed in this project is that 

of a looped conveyor-type mold.  This transition is shown in Figure 3-1.  The primary 

basis for this decision is the superior heat transfer properties this type of mold will 

provide to the system; the 

first of which will be the 

maximizing of the 

induction heating 

efficiency by allowing the 

mold to actually move 

through the induction 

heating coil, rather than 

over it, as is the case when the mold is attached to the embossing roll.  The increased 

surface area from having both a longer mold, and exposing both sides of the mold when it 

is detached from the embossing roll effectively doubles the heat transfer provided by 

external convection.   A second advantageous effect of using a conveyor mold is that of 

the inhibited size constraint of the mold.  When simply wrapping a mold about a cylinder, 

the length of the continuous mold is limited to the circumference of the mold, but when a 

conveyor mold is used the continuous mold length is no longer limited by this constraint 

and can be made as long as desired.   

 

 

  

 

 

 

 
 

 

Figure 3-1:  Transition from circular R2R mold 

to conveyor R2R mold. 
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A cartoon diagram of the R2R embossing process using a conveyor mold is shown in 

Figure 3-2.  In this figure, Dark blue circles are pressure rolls, purple rolls are idler rolls, 

film is dark green line and circles, and cooling air represented with light blue arrows.  

Red wavy arrows could 

represent corona treatment, 

heat, or other types of pre-

treatment used in embossing 

techniques. The black loop 

surrounding the embossing 

roll (top blue circle) is the 

mold; it is shown wrapped 

around the conveyor roll and 

moving through the 

induction heating coil.  The initial mold used is in the form of two 290mm x 25mm 

„ribbons‟ attached by a polyimide-based adhesive that is tolerant of temperatures up to 

250ºC.  The mold strips were wrapped into the 

required elliptical shape and layers of adhesive 

applied to the inner diameter of the mold strips.  A 

picture of the adhesive connection between mold 

strips is shown in Figure 3-3.  In this figure, the 

black roll is the conveyor roll, the silver strips are 

the mold ribbons, and the orange film between the 

mold ribbons is the adhesive.  The mold strips 

Figure 3-2: Cartoon cross-sectional view of 

proposed embossing process. 
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Figure 3-3: Adhesive 

connection between mold 

ribbons. 
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were wrapped into the required elliptical shape and layers of adhesive were applied to the 

inner diameter of the mold strips to ensure a constant mold thickness throughout the 

conveyor mold. 

 

3.2 Mold Features 

The mold initially used for experimentation was a nickel alloy mold with sawtooth 

type features 30μm in height and pitch.  This is a flexible mold, being only 230μm thick.  

A drawing of the cross-section of the mold is shown in Figure 3-4.  The flexibility allows 

for the mold to be looped 

around the embossing 

roll and a dummy roll 

that simply redirects the 

mold back to the 

embossing roll.  The small thickness of the mold may raise questions about its ability to 

be heated efficiently using induction heating.  For efficient induction heating of 

rectangular cross-sections it is generally required that the heated part be at least two times 

the skin depth in thickness (to allow for unobstructed eddy current flow).  The relative 

magnetic permeability of the mold material (nickel) is 1240 [H/m] and the electrical 

resistivity is 6.4e-8 [Ω-m].  The induction heater was tuned using a section of this mold, 

and the highest resonant frequency the machine could produce was found to be 231 kHz.  

Inserting these values, and the magnetic constant of 4π×10
-7

 [H/m], into equation (1.7) a 

skin depth of 7.52 μm is calculated, and the mold thickness used here is confirmed to be 

well above the two-skin-depth requirement.  [42, 43] 

30μm 

30μm 
230μm 

    Figure 3-4:  30μm sawtooth mold features in nickel. 
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Six molds in non-conductive substrates were also acquired for embossing 

experiments.  Since the following molds are all non-conductive and non-magnetic, they 

require electroforming with a magnetic metal.  The first of these molds is a 250nm 

linewidth 375nm period grid a feature height of 200nm on a poly(methyl methacrylate) 

(PMMA) substrate and was made using a traditional nanolithography process.  The 

second mold is a 500 nm line grid color filter.  This mold was produced using laser 

interference lithography and produced a „stepped‟ line pattern.  The film with this pattern 

is known as a „colorless‟ color filter because no pigment has been added to absorb any 

spectrum of light; the light is filtered solely by the refractive properties of the surface 

pattern.  The substrate of this mold is unknown, but assumed to be PET or a similar 

material. [10-12]     

The third mold is a grid of lines with a 700nm period and 300nm linewidth set in 

ethylene tetrafluoroethylene (ETFE).  This mold was obtained from Professor L. J. Guo 

at the University of Michigan Ann Arbor.  Professor Guo provided us with a piece of 

mold he has been using in his UV R2RNIL experiments in which he demonstrated that 

the process is capable of replication of patterns down to 100nm. [27] 

Two of the molds used were obtained from Professor Russell‟s group at the 

University of Massachusetts Amherst in the Department of Polymer Science and 

Engineering.  The features obtained are 25nm and 35nm cylindrical posts composed of 

silicon dioxide.  The method of production for these nanofeatures involved the selective 

removal of one phase of a diblock copolymer, filling of the recesses with poly(dimethyl 

siloxane), and subsequent plasma etching. [44, 45] 
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The last non-conductive mold acquired was a circuit test pattern in an acrylate based 

photoresin on glass.  Professor Carter‟s group at the University of Massachuestts 

Amherst in the Department of Polymer Science and Engineering provided the pattern.   

The pattern is composed of lines of various lengths, from 1μm down to 250nm, and 

nanocircuitry on which to test pattern continuity using a 4-point probe or other electronic 

circuit-measuring device.   

 

3.3 Electroforming Background 

Electroforming is a process by which metal is deposited on the surface of a substrate, 

or mandrel.  Often used for its excellent surface finishes and ability to create uniform 

parts of varying thickness, electroforming has more recently been incorporated into the 

nanofabrication industry.  Electroforming is preformed by running a current through a 

positive anode “target” and a negative cathode, or mandrel, in an aqueous ionic solution.  

The target is composed of the pure metal or alloy desired in the final product, and the 

mandrel is the mold around which the metal is deposited.  Many different pure metals and 

alloys can be electroformed.  A schematic of the nickel electroforming process is shown 

in Figure 3-5.  In this figure, a non-conductive mandrel (a) is vapor coated with a 

conductive „seed layer‟ (b) to produce a mandrel with a conductive surface (c).  The 

mandrel, along with a target material, is then placed in an aqueous solution of metallic 

and non-metallic ions known as a Watts bath (d).  The target (positively charged block) is 

attached to the positive end of a current source and the mandrel (negatively charged 

circle) is connected to the negative terminal of the current source.  A typical Watts bath 

for a nickel electroplating solution is composed of nickel sulphate (240 – 360 g/l), 
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Figure 3-5:  Overview of the process required for electroforming of a non-

conductive mandrel (mold). 
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sodium chloride (15-30 g/l), boric acid (30 – 45 g/l), and often wetting agents and/or 

surfactants are added to improve surface quality in the finished part.  [46-48] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 

 

As a voltage difference is generated between the anode (target) and cathode (mandrel) 

the positively charged nickel ions (Ni
2+

) become attracted to the mandrel and the 

negatively charged sulphate ions (SO
4-

) become attracted to the target.  Electrons from 

the mandrel are combined with the nickel ions and chemical bonds are formed with the 

surface of the mandrel and nickel.  Nickel ions are replenished into the solution from the 

target.  Once completed, the mandrel is then removed from the Watts bath Figure 3-5(e) 

and the electroform and mandrel are separated (f).  Microstructure, surface quality, and 

internal stress of the finished product can be accurately controlled by tuning solution pH, 

current density, alloying concentration, bath temperature, and other parameters involved 

in the electroforming process.   [46-48] 

 

3.4 Mold Replication 

The electroforming mandrel is the mold or form used to deposit the metal in a desired 

shape and may be composed of both conductive and non-conductive substrate materials.  

The molds used as mandrels in this project are all composed of non-conductive mandrels, 

therefore a metallic coating must be deposited on the surface of the mandrel prior to 

electroforming to produce a conductive surface upon which metal can grow.  This is 

often done by treating in a silver bath (silvering), or by vacuum/sputter coating gold or 

palladium onto the surface of the mandrel.  Good adhesion between the non-metallic 

surface and the conductive surface is needed to achieve proper replication.    
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Due to the number of molds to be replicated via the electroforming process, and the 

cost of surface metallization, it is desired to combine all the molds into one mandrel.  A 

150mm diameter polycarbonate disc was used as the base for the combined mandrel and 

a recess for each mold was machined into the surface of the disc to keep the surface of 

the mandrel as level as possible.  Each mold was set into its respective recess and a two-

part epoxy was used to secure the molds to the mandrel.  A picture of the finished 

mandrel prior to electroforming is shown in Figure 3-6.  In this figure, the mold material 

and patterns clockwise from top are as follows:  250nm lines in PMMA, 500nm lines in 

PET, 300nm lines in ETFE, 35nm posts in silicon dioxide, 100-1000nm lines in acrylic 

resin, and 25nm posts in silicon dioxide. 

The company that preformed the electroforming of the mandrel was NiCoForm in 

Rochester, NY.  NiCoForm specializes in optical quality electroforms and uses a high 

strength magnetic nickel-cobalt alloy.  A picture of the finished electroform is shown in 

Figure 3-7.  The two largest molds (250nm linewidth, 375nm period, 200nm height in 

PMMA and 300nm linewidth, 700nm period, 200nm height in ETFE) were replicated 

with good quality, while the remaining molds were not replicated at all, likely due to poor 

Figure 3-6:  Polycarbonate mandrel 

with attached molds prior to 

electroforming.   
Figure 3-7:  Electroform of patterns 

used in experimentation. 
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adhesion during the surface metallization process.  The electroform is approximately 

0.17mm in thickness.  Atomic 

force microscopy images of the 

two well-replicated molds are 

shown in Figure 3-8.  The 

larger of the two successfully 

electroformed molds (Figure 3-

8b) was unusable due to excess 

adhesion between the mold and 

electroform, causing most of 

the mold to stick to the 

electroform.  A small ~1cm
2
 

section of electroformed mold 

was available for the AFM in 

Figure 3-8b.   

 

 

 

 

 

 

 

 

Figure 3-8:  AFM images of the electroformed 

PMMA substrate mold (a) located on the top of the 

electroform (red tint in Figure 3-7) and of the 

replicated ETFE substrate mold (b) located on the 

bottom of the electroform (blue-green tint in 

Figure 3-7).  

(b) 

(a) 
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CHAPTER 4 

EXPERIMENTATION 

 

4.1 Preliminary Work 

In preparation for the experimentation phase of this project, preliminary data was 

taken to determine heating power, roller speed, and roller force.  The induction heater 

was tuned manually using a computer connection to the induction heater through an RS-

485 cable.  The induction heater was forced to try and locate a resonant frequency in a 

given range of operating frequencies (e.g. force to operate between 100 – 200 kHz).  For 

this particular coil design and workpiece, the resonant frequency was found to be 231 

kHz.  A method to automatically tune the induction heater using the computer interface 

along with the commands used in this process are included in the Appendix. 

One part of the experimental phase of the project will be the acquisition of 

experimental process parameters for use in simulating embossing R2RNIL.  A 

disadvantage in using induction heating is the large amount of high frequency noise 

generated in the vicinity of the coil, induction heating supply wires, and the induction 

heater itself.  To avoid this problem entirely, measurements were taken prior to 

experimentation in isolated mini-experiments.  The two major parameter measurements 

hindered by experimentation are the force measurement between pressure rollers and 

mold temperature curves.  Mold temperature curves must be obtained separate from 

experimentation, since the pressure between rollers during experimentation would 

destroy the fragile thermocouples used in the measurement. 
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4.2 Force Measurement 

A dimensionless compression ratio was used to qualitatively measure the pressure at 

the mold-film interface and was defined as the initial thickness of the mold and film 

layers divided by the roller spacing.  For example, two layers of film (0.2mm × 2 = 

0.4mm) and the mold in between (0.23mm) combine to a total thickness of 0.63mm.  A 

compression ratio of 2 would result from a roller spacing of 0.315mm with such a mold-

film thickness.  Feeler gauges were used to set the mold spacing to assign a desired 

compression ratio.  The correlation between these two parameters is dependent on the 

material used and the temperature of the materials, therefore these variables should 

remain constant between the correlation experiments and actual experiments for a 

completely accurate comparison.  A compression ratio corresponding to a desired applied 

force can be set by physically adjusting roller spacing using feeler gauges.   

The displacement screws on the Stanat machine used to set roller spacing allow for 

space to insert spacers with attached strain gauges.  A pair of solid aluminum discs 

approximately 19mm in diameter was precisely machined, and a pair of strain gauges was 

glued to each side of each disc (a total of four strain gauges).  Such large diameter discs 

serve a twofold purpose:  they provide the stiffness required in maintaining the zero-

deflection assumption in the roller spacing, and they must withstand the large force 

applied during operation.  These discs were then connected to a strain gauge bridge and 

calibrated on an Instron testing machine, which provided strain-force curves to correlate 

measured strain to applied force.  The discs were then tightly fit in-between the 

displacement screw and brass roller bearing, as shown in Figure 4-1.  In the test 

experiment for this setup a single PET film layer, mold, and two strips of heat-resistant 
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(b) 

Alu Discs 
Figure 4-1: 

Aluminum disks with 

attached strain 

gauges used in 

measuring contact 

force during 

embossing (a), and 

bridges used to 

convert strain gauge 

signal (b) 

(a) 

adhesive tape were preheated to 110ºC and fed through the pressure rollers at a 

compression ratio of 1.5.  The strain gauges revealed a force of ~3000N; therefore a 

compression ratio of 1.5 with this „sandwich‟ layering at this temperature corresponds to 

a force of 3kN.  This is a reasonable force considering the film-mold section is being 

stressed to 50% compressive strain very quickly.   
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4.3 Mold Surface Temperature Measurement 

Mold surface temperature measurements were acquired by fixing a thermocouple to 

the surface of the conveyor mold using heat-resistant tape.  The Stanat machine was then 

activated and the mold was allowed to move through the activated induction heating coil 

just as it would in an actual experiment.  A set of heating curves for various induction 

heating power levels (% maximum) and roller speeds (% maximum in 1
st
 gear) is 

Figure 4-2:  Mold surface temperature versus time after induction heating for 

the 30μm nickel mold.  First two digits of legend indicate speed of mold (% 

maximum roller speed in 1
st
 gear) and last two digits indicate induction 

heating power (% maximum). 
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included in Figure 4-2.  This graph plots mold surface temperature versus time for the 

30μm mold, with the actual heating curve omitted due to noise from the induction heating 

coil (high intensity electromagnetic field generation) interacting with the thermocouple 

signal.  The mold begins heating from 20ºC and the mold moves through the coil at 

various speeds (first two digits of scale, % maximum roller speed) and varying induction 

heating power (last two digits of scale, % maximum).  The linear mold velocity is 

proportional to the roller rotational speed, and a roller rotational speed of 12.5% 

maximum corresponds to 6.58rpm, or a linear mold velocity of 26mm-s
-1

.  The effect of 

slower roller speed is a longer heating time, generally resulting in higher mold surface 

temperatures after exiting the induction heating coil, and this is an expected result. The 

dashed line is an approximation of the temperature at which the mold contacts the film, 

and does vary slightly depending on roller/film speed.   

Analyzing the curves of constant speed and varying induction heating power reveal a 

much more interesting result.  For induction heating powers below 95% maximum, the 

peak mold surface temperatures approach 200ºC for even the slowest speed of 10% 

maximum roller speed; while using roller speeds lower than this value occasional stalling 

was found to occur, therefore this was the lowest speed tested.  For an induction heating 

power of 95%, a completely different cooling slope and much higher peak temperatures 

are observed initially, until finally joining the same slope and temperatures as the tests at 

lower power.  An explanation for this large jump in mold surface temperature when 

reaching a specific induction heating power would be that at such a „threshold‟ induction 

heating power, the heating rate at the surface of the mold due to the induction heating 

becomes much faster than the conduction of heat to the core of the mold.  This would 
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result in a much higher surface temperature, and a faster cooling rate as the temperature 

of the core did not change during heating, but quickly absorbs heat once the conduction 

of heat from the surface of the mold becomes greater than that supplied by induction 

heating.  

The electroform molds, being composed of a different alloy (~98% Ni, ~2% Co) than 

the 30μm mold (~100% Ni), had much different induction heating-temperature response 

curves.  The results for three different heating percentages at a roller speed of 15% 

maximum is shown in Figure 4-3.  The induction heating efficiency was observed to be 
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Figure 4-3:  Induction heating-temperature response for 

electroformed Nickel-Cobalt alloy.  The legend used here is the same 

format as that of Figure 4-2. 
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much better with this specific alloy, and lower induction heating power was needed to 

achieve the same temperature response as compared with the nickel 30μm mold.   

 

4.4 Finalized R2R System 

A front view of the R2R system used in experimentation is included in Figure 4-4.  

Figure 4-4(a) shows the panoramic view of the entire system; beginning from the left side 

of the picture is the computer interface used to control the induction heater.  The UV light 

control sits between the computer interface and the Stanat machine, and the induction 

heater is the rightmost instrument in Figure 4-4(a).  The cartoon diagram shown 

previously in Figure 3-2 is a cross-sectional view of the actual setup shown in Figure 4-

4(b).   
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Due to the geometrical constraints of the mold conveyor path, the embossing roller 

was within the induction heating proximity of the induction heating coil.  As a 

consequence of this, the magnetic steel embossing roll was heated along with the nickel 

mold; however, this effect should be small due to the large distance from the coil (< 

25mm) and the high thermal inertia of the embossing roller.    

 

 

 

Figure 4-4: Panoramic view (a) of 

completed experimental setup 

with a magnification of the mold 

configuration (b). 
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4.5 Film Speed 

In order to determine a proper film speed, a brief investigation into the time required 

for the polymer to flow into the mold features should be preformed.  The mold flow 

during embossing can be adequately described as 1-dimensional flow between a pair of 

infinitely long plates, as shown in Figure 4-5.  

The primary driving force moving the 

polymer into the features is the pressure 

difference created by the embossing rollers 

during molding.  Using the basic equation for 

1-D, pressure-driven, flow between two 

infinitely long plates the derivation begins as 

follows: 

 

 

 

where ∂p/∂x is the pressure gradient, η is the viscosity, and ux is the flow velocity in the 

x-direction.  Solving for ux with a “no-slip” boundary condition at the walls, 

 

 

 

which details the profile of the x-directional flow front as a function of distance from the 

neutral flow axis.   In order to properly characterize the fill time, we need to find the 

average velocity of the flow front: 
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Figure 4-5: Model used to represent 

flow into a micro-/nanofeature. 
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The fill time can now be calculated as follows: 

 

 

 

One notable feature about this relation for fill time is the fact that so long as Δx and h 

scale equally (constant aspect ratio), the fill time remains constant. [49, 50] 

To begin solving for numerical values of the fill time, the viscosity and pressure 

difference must be determined.  A good approximation for polymer viscosity for 

temperatures near the glass transition is the Williams-Landel-Ferry (WLF) equation, 

shown below 

 

 

where η(T) is the temperature-dependant viscosity, η0 is the viscosity at the glass 

transition temperature, C1 ≈ 17.4, C2 ≈ 51.6 [K], and Tg is the glass transition 

temperature.  The constants C1 and C2 are generally material-dependant but the given 

values are considered to be approximate for the entire range of glassy polymers, and for 

the purpose of a quick approximation of the viscosity these values will suffice.  Using an 

experimental value for the viscosity of PET near its melt temperature (η = 4000P @ T = 

280ºC), η0 is calculated to be 4.06e9 Poise.   Plotting T vs. log(η) for values beginning at 

the glass transition temperature and past the melting point of PET, the curve shown in 
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Figure 4-6 is generated.  The minimum temperature for embossing will be the 120ºC (Tg 

+ 40ºC) and the maximum temperature will be 250ºC since this value is the maximum 

rated temperature of the adhesive holding together the conveyor mold.  Values of the 

viscosity at 120ºC and 250ºC are 2.03e6 P and 6.84e3 P, respectively. [33]  

To determine the pressure needed for the calculation of fill time, the contact area of 

the film is needed.  The width of the mold, for the 30μm features, is 25mm and the 

contact force was previously measured to be 3000N.  A measurement for contact force 

was only taken using the 30μm mold, therefore for this fill approximation it will be 

assumed that the calculated pressure for this mold will be identical to the pressure using 

the remainder of the molds.  The contact length of the embossing stage can be calculated 

on a purely geometrical basis, as shown in Figure 4-7 for a contact ratio of 1.5 (0.56mm / 

1.5 = 0.38mm).  Using Pythagoreans theorem the value of Lcontact can be calculated to be 

5.1mm.  The average pressure over this contact area can now be calculated using the 
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Figure 4-6: Semi-log plot of temperature-viscosity relationship of PET 

according to the WLF equation using generalized polymer constants. 
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3000N contact force and the mold width and contact length through the following 

formula 

 

 

 

 

Inserting values for pressure and viscosity, and using an aspect ratio of 1 (Δx = h), 

numerical values for the fill time can be determined for the boundary temperatures.  For a 

temperature of 120ºC a fill time of 1.015s is calculated, and for a temperature of 250ºC a 

fill time of 0.003s is calculated.  This three order of magnitude difference in fill time is 

attributed to the same difference in viscosities at these two temperatures, since fill time is 

proportional to viscosity.  To determine the maximum limit on film speed can be 

determined through the following relationship: 
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Figure 4-7:  Geometrical representation of embossing stage. 
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FilmSpeed  (4.7) 

 

 

where tcontact is the length of time the mold and film are compressed between embossing 

rolls (embossing time).  Using the fill time as the minimum contact time required for 

proper filling of the features, we can obtain the maximum film speed satisfying this 

requirement.  At a temperature of 120ºC with a fill time of 1.015s a maximum film speed 

of 5.1mm-s
-1

 is calculated, and at a temperature of 250ºC with a fill time of 0.003s a 

maximum film speed of 1693mm-s
-1

 is calculated.   Due to limitations on roller speed, 

the minimum roller speed that can be reliably achieved without stalling the roll press is 

10% of maximum roller speed in 1
st
 gear, or 21mm-s

-1
, therefore complete filling is not 

expected to occur at temperatures of 120ºC.  In taking a different approach of solving for 

the aspect ratio (Δx/h) in Equation 4.4 by setting the fill time from Equation 4.4 equal to 

the contact time for a known film speed in Equation 4.7, the maximum feature aspect 

ratio that can be replicated may be determined.   For a film speed of 25mm-s
-1

 at a film 

temperature of 250ºC, an aspect ratio of ~8 could be achieved on the basis of the 

preceding analysis.  

 

4.6 R2R Experimental Procedure 

To achieve the required film pre-heating temperature at embossing, the gap length of 

UV heating was determined.  With a known heating rate of the UV light in the PET film 

(the slope of the red heating curve in Figure 2-4) and a known linear film speed, gap 

length of UV light could be calculated for target preheat temperatures.   
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To block the remaining length of the 125mm UV light shutter, a UV absorbent Pyrex 

plate was fixed over the surface of the UV light, leaving only the calculated gap to allow 

the UV light to heat the passing film during experimentation.     

For molding with the nickel 30μm mold the procedure is as follows.  The total mold-

film thickness was measured to be 0.56mm, and included the mold, film, and two layers 

of high-temperature tape.  For a compression ratio of 1.5, a roller gap of 0.37mm is 

required.  The gap spacing was set during experimentation since closing the gap on a cold 

mold and glassy film would destroy the mold. A 600mm long section of 152mm wide 

PET film, 0.20mm thickness, was cut into a 102mm wide section.  The film was then fed 

over the UV light, through the R2R embossing rollers, over the lift-off roller and out the 

backside of the machine.  With the PET film already inserted in the R2R machine, the 

experiment began by first turning on the 80psi cooling air.  The motor drive on the Stanat 

machine was than activated, and the UV light and induction heater were activated once 

the film began moving.  A lab assistant supplied film tension at the back of the machine 

manually.  

Experiments were performed for varying roller speeds, induction heating power, and 

compression ratio.   Pre-heating temperature was kept about 200ºC to maximize the 

viscous properties of the film but not allow gross film deformation by excess heat, since 

the melting temperature of PET is 250ºC.  Since roller speed and induction heating power 

were both correlated with mold surface temperature, as shown previously in Figure 4-2 
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and Figure 4-3, target values for mold surface temperature were chosen as experimental 

variables.     

After allowing 2-3 seconds for the R2RNIL embossing system to warm up, the roller 

gap was closed to 0.37mm and embossing began.  For experiments performed with a 

target mold temperature under 200ºC, embossing was continued until the end of the film 

was reached after around 25 seconds of elapsed experiment time.  After accounting for 

time between activating the instruments and warm-up, about 15 seconds of embossing 

occurred corresponding to approximately 500 linear millimeters of embossed film, which 

varied depending on the roller/film speed used in the particular experiment.  For 

experiments with a target mold temperature greater than 200ºC, embossing was 

preformed only on single mold ribbons, since heating the ribbon connection higher than 

200ºC was observed to cause adhesive failure under mold conveyor tension.  Embossing 

in this way could only create patterned films 125-150mm in length using the 30μm mold. 

[32] 

For experimentation using the electroformed 250nm linewidth 375nm period mold, 

the conveyor mold setup was changed due to the small area of electroform to be 

patterned.  The majority of the conveyor was composed of a single PET film strip 

connected by a layer of heat resistant tape.  The electroformed mold was placed on this 

layer of heat resistant tape and secured using another layer of tape.  Figure 4-8 shows the 

mold conveyor for the electroformed molds.  The mold layering consisted of two layers 

of heat resistant tape, the mold, and the substrate film for a total thickness of 0.47mm.  

For a CR of 1.5 to be achieved a roller spacing of 0.31mm was required.  Based on the 
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results from the replication of the 30μm mold features, a mold surface temperature of 

250ºC was targeted for experimentation using this mold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-8: Mold conveyor using a 

section of electroformed mold. 

Mold 
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CHAPTER 5 

RESULTS AND CONCLUSION 

 

5.1 Pattern Characterization 

During experimentation using constant mold surface temperature and varying 

compression ratio, it was determined that a CR of 1.5 was ideal.  CR values higher than 

1.75 leaded to film deformation that overwhelmed the replicated pattern; such types of 

deformation were visible as sharkskin and wavy surface profiles.  CR values higher than 

2.00 actually deformed the nickel mold used in experimentation.  For CR values below 

1.30, patterns on the surface of the substrate were not visible to the naked eye and laser 

light revealed weak to no diffraction pattern, which are apparent in the 30μm pattern.  

The diffraction pattern for one such replicated 

mold upon exposure to green laser light is 

shown in Figure 5-1.  

For the 30μm nickel mold, a range of mold 

surface temperatures from 130ºC to 250ºC was 

used for a constant CR of 1.5 and a film pre-

heat temperature of 200ºC.  From the target 

mold surface temperature, a proper induction 

heating power and roller speed were backed 

out of the induction heating-temperature mold response curve of Figure 4-2 and used in 

experimentation.  The patterns were characterized using both profilometry and scanning 

electron microscopy.  Figure 5-2 shows profilometry and SEM results for patterns 

Figure 5-1:  Diffraction pattern of 

replicated 30μm sawtooth pattern. 
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replicated using the 30μm mold at 130ºC (a) and 250ºC (b) as well as for the mold itself 

(c).  The profilometer results for the mold only show the features approximately 8μm in 

height; this is probably a result of the profilometer tip being unable to completely probe 

the surface of the mold due to the shape and size of the tip, the round tip cannot properly 

reveal the surface characteristics of the sharp sawtooth troughs.  The SEM image (~900x) 

of the 30μm mold shows only light pressing marks present on the surface of the PET 

film; the scale bar in the lower left corner of the SEM image is 30μm in length.  A 

microtomed cross-section of the film did not reveal the presence of microfeatures, 

possibly because the microtoming process disturbed the features.  The profilometry 

results for the 130ºC patterned film show wavy features slightly over one micron in 

height.  Figure 5-2(b) shows the results for the patterns replicated at a mold surface 

temperature of 250ºC, the melt temperature of PET.  Although the height of the patterns 

is not clear from the SEM image, the shape of the patterns is certainly more defined.  The 

profilometer results confirm this, showing a more distinct sawtooth shape almost four 

microns in height.  The features were transferred at a linear film rate of 25mm-s
-1

.  
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130°C 

250°C 

Figure 5-2(a):  SEM and profilometry results for replicated 30μm patterns 

at 130ºC. 

Figure 5-2(b):  SEM and profilometry results for replicated 30μm patterns 

at 250ºC. 
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The replication of the electroformed 250nm linewidth 375nm period pattern was 

accomplished using mold surface temperatures of 250ºC at a speed of 31mm-s
-1

, but no 

patterns were observed for mold surface temperatures of 200ºC.  The pattern is 

approximately 150mm in length. Atomic force microscopy results show that the pattern 

did successfully transfer to the PET film, however, the quality of the replication needs to 

be improved.  AFM results for the replicated film along with the original mold before 

electroforming are shown in Figure 5-3.  These features were transferred at a linear film 

speed of 31mm-s
-1

. 

 

Figure 5-2(c):  SEM and profilometry results of the original mold. 

Mold 
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Figure 5-3(a): Top-down AFM view of the original mold in PMMA with 250nm 

linewidth, 375nm period, and 200nm height. 

Figure 5-3(b): Tilted AFM section view of the original mold in PMMA with 

250nm linewidth, 375nm period, and 200nm height. 
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Figure 5-3(c): Top down AFM view of the electroformed copy of the PMMA mold. 

Figure 5-3(d): Top down AFM view after performing R2RNIL on PET using the 

electroform of the mold, revealing the presence of the structure. 
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5.2 Discussion    

It was predicted that features should begin to 

emboss once the temperature of the polymer rises 

higher than its glass transition temperature.  In the 

case of the replication of the 30μm mold patterns, 

the incomplete filling of the mold may be due to a 

combination of the two following causes.  The 

first of these proposed causes is the shallow angle 

of the sawtooth pattern that does not sufficiently 

force the polymer between the features as a 

pressure is applied.  This effect is illustrated in 

Figure 5-4 showing the mold (black, top) pressing 

into the substrate film (green, bottom).  Since the sidewalls of the mold features in (a) are 

able to support a vertical stress, the film need not completely fill the mold in order to 

Figure 5-4:  Illustration of 

improper mold filling due to 

shallow mold angle (a), and 

better mold filling with 

sharp mold angle (b). 

(a) 

(b) 

Figure 5-3(e): Tilted AFM section view of the AFM results after performing 

R2RNIL on PET using the electroform of the mold. 
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achieve a proper force balance; whereas in (b) with sharp mold angles, the fill must 

penetrate further to achieve the contact area necessary for a force balance.  From the fill 

time analysis in Chapter 4, using the approximation of the square wave features, the 

features embossed at 130ºC were not predicted to properly fill due to lack of holding 

time.  The features embossed at 250ºC, however, still do not show complete filling, 

although the shape of the replicated features is showing the characteristic sawtooth shape.  

The reason for incomplete filling at such elevated temperatures is possibly due to the 

deformation of the mold during embossing due to the presence of such high stresses.   

Due to the limitation of 250ºC mold surface temperature set by the maximum 

working temperature of the adhesive linking the conveyor mold, temperatures in the 

processing temperature range of PET (~300ºC) were unable to be tested using the current 

process.  Further studies into a superior linking method for forming the conveyor mold 

could allow higher temperatures to be used in the patterning of features using thermal 

embossing R2RNIL.  

 

5.3 Conclusion     

It can be concluded from this research that the thermal embossing R2RNIL using a 

conveyor mold is possible, and is capable of replicating features down to 250nm.  The 

implementation of a conveyor-type mold has the distinct advantages that the continuous 

mold length may be longer than the circumference of the embossing roller and has 

superior heat transfer capabilities.  A system for thermal embossing R2RNIL was 

developed using basic components including a cold rolling press, induction heater, and 

UV light and used to successfully transfer patterns in the micro-/nanometer range.   
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The Rapid Thermal Response technique was applied in the heating of the mold, 

which involved using induction heating to heat the surface of a thin metallic mold with a 

small thermal inertia.  In order to replicate non-metallic structures, a method for 

electroforming was described and used to successfully transfer features from PMMA and 

ETFE substrates into a magnetic, conductive nickel-cobalt alloy.   

The thermal embossing R2RNIL is sensitive to the mold temperature and the specific 

mold features desired for replication.  For replication of patterns 30μm in height and 

pitch, patterns were not transferred well for temperatures slightly above its glass 

transition, rather the patterns transferred best when the mold surface temperature reached 

its melt temperature, much higher than the glass transition temperature for PET.  This 

trend was predicted using an approximated fill analysis of the polymer melt into the mold 

cavities.  Since complete filling was still not observed for sufficient fill time at a 

temperature of 250ºC, improper filling must be caused by a different mechanism such as 

mold deformation.  For patterns 250nm in linewidth with a 375nm period replication did 

not occur at temperatures less than the melt temperature of the substrate.  The positive 

effects of increased mold temperature are likely to continue as the processing temperature 

of PET is approached, but due to limitations on the mold geometry this could not be 

tested using the current process.   
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CHAPTER 6 

FUTURE WORK 

 

Due to the lack of complete filling of the molds using the current thermal embossing 

R2RNIL system, modification are necessary to properly address these issues.  The first 

modification that could be instituted is the introduction of a larger embossing roller.  An 

increased embossing roller diameter would provide the following two positive effects on 

pattern transfer fidelity:  increased embossing contact area leading to an increased 

embossing time, and increased holding time allowing for proper film cooling to avoid 

negative relaxation effects such as relaxation.   

A more advanced cooling system is also needed if thermal embossing R2RNIL is to 

become a viable industrial process.  Convective air cooling used in this project was 

sufficient to provide proper temperature control for a small number of cycles until the 

average temperature of the system became too high for further molding.  The 

implementation of a water-cooled system for film cooling during the holding stage and 

for cooling of various components from excess heat would be a feasible improvement 

toward the steady-state operation of the thermal embossing R2RNIL process.  

A further setback encountered in the advancement of R2RNIL lies with the mold 

itself.  For the process to be operated continuously, the mold must be looped around the 

embossing roller and one or more conveyor roller.  A method of properly linking together 

smaller molds into a larger conveyor mold is necessary to bring the surface temperature 

of the mold to desired temperatures.  The limiting factor on mold heating temperature in 

the preceding experimentation was the adhesive link between mold sections.  If a method 
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of joining mold sections using a carefully controlled soldering or welding technique, this 

would increase the possible working temperature of the system.   

In order to further drive down the size of the replicated features using this process, a 

magnetic, conductive mold must be made with such small features.  Most, if not all, of 

the sub-100nm features produced using modern techniques are done so in polymer or 

glass (silicon) substrates, neither of which are metallic or conductive.  In this project, 

electroforming was used to replicate certain surface patterns, but was unsuccessful in 

some cases due to adhesion problems encountered during the process.  For future 

progress in thermal embossing R2RNIL, advancements must be made in the 

electroforming process, or additional preparatory procedures must be introduced to allow 

electroforming of non-adhesive molds.   

Lastly, for proper insight into the micro- and nanoscale flowing of polymer melt into 

mold features during embossing conditions mechanical flow simulations should be 

preformed and compared with the experimental results.  In this project, embossing 

conditions were recorded, and these values will be sent to Professor Donggang Yao at the 

School of Polymer, Textile and Fiber Engineering Department of Georgia Institute of 

Technology for micro-/nanoscale flow simulations.  The outcome of the flow 

simulations, combined with the experimental embossing results will allow a prediction of 

the ideal mold pattern geometries and process conditions, which will be a necessary step 

toward the industrial acceptation of Roll-to-Roll Nanoimprint Lithography.       
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APPENDIX:  INDUCTION HEATER TUNING AND CODE 

 

The following method for tuning the induction heater in this project was used, 

requiring only the use of a computer workstation and an RS-485 connection to the 

induction heater (no LCR meter required).  The induction heater used in the thermal 

embossing R2RNIL experiments discussed was an Ameritherm Novastar 20kW unit. 

Since the induction heater used in this project has a maximum output frequency of 

485kHz, it is known that the only suitable resonance frequencies for the induction coil 

and workpiece will be below this value.  Using the Hyperterminal program in conjunction 

with the RS-485 serial connection to the induction heater, code was used to force the 

induction heater to operate between specific frequencies and find a resonant frequency.  

Since the highest resonant frequency is desired, it is convenient to work from 485kHz 

down to determine this value.   

Checking for a resonant frequency using 100kHz bin sizes is sufficient, as finding 

two resonant frequencies in such a small range is rare.  If a resonant frequency is found in 

a given 100kHz range, the induction will operate at that frequency; if no resonant 

frequency is found the induction heater will output an error and fault.  The code for the 

procedure is shown below, including comments on each command (rightmost text 

alongside each command line).  The text „001‟ used in the code represents the tag for a 

specific induction heater if multiple machines are used at once.  Since only one induction 

heater is used in this project it is tagged as 001.  If the induction heater successfully 

transmitted power after given these commands than the highest operating frequency for 

the induction coil and workpiece combination is known.  If a fault were recorded after 
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entering these commands, the next step would be to set the lower bound frequency to 

300kHz and the upper bound frequency to 400kHz and repeat until an operating 

frequency is found. 

 

pass001,test password = test 

freq001,user user specifies operating frequency range 

start001,400 lower bound frequency = 400kHz 

stop001,485 upper bound frequency = 485kHz 

v001,30 induction voltage = 30% maximum 

t001,1 induction heating time = 1 second 

h001,on heater on 
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